Effect of Si(111) Surface Modification by Ga Focused Ion Beam at 30 kV on GaAs Nanowire Growth

Author:

Shandyba Nikita,Balakirev SergeyORCID,Sharov VladislavORCID,Chernenko Natalia,Kirichenko Danil,Solodovnik MaximORCID

Abstract

This paper presents the results of experimental studies of the effect of Si(111) surface modification by Ga-focused ion beam (FIB) at 30 kV accelerating voltage on the features of the epitaxial GaAs nanowire (NW) growth processes. We experimentally established the regularities of the Ga ions’ dose effect during surface modification on the structural characteristics of GaAs NW arrays. Depending on the Ga ion dose value, there is one of three modes on the surface for subsequent GaAs NW growth. At low doses, the NW growth is almost completely suppressed. The growth mode of high-density (up to 6.56 µm−2) GaAs NW arrays with a maximum fraction (up to 70%) of nanowires normally oriented to the substrate is realized in the medium ion doses range. A continuous polycrystalline base with a dense array of misoriented short (up to 0.9 µm) and thin (up to 27 nm) GaAs NWs is formed at high doses. We assume that the key role is played by the interaction of the implanted Ga ions with the surface at various process stages and its influence on the surface structure in the modification region and on GaAs NW growth conditions.

Funder

Ministry of Science and Higher Education of the Russian Federation

Strategic Academic Leadership Program of the Southern Federal University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference30 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3