Abstract
Mitochondrial myopathies represent a heterogeneous group of diseases caused mainly by genetic mutations to proteins that are related to mitochondrial oxidative metabolism. Meanwhile, a similar etiopathogenetic mechanism (i.e., a deranged oxidative phosphorylation and a dramatic reduction of ATP synthesis) reveals that the evolution of these myopathies show significant differences. However, some physiological and pathophysiological aspects of mitochondria often reveal other potential molecular mechanisms that could have a significant pathogenetic role in the clinical evolution of these disorders, such as: i. a deranged ROS production both in term of signaling and in terms of damaging molecules; ii. the severe modifications of nicotinamide adenine dinucleotide (NAD)+/NADH, pyruvate/lactate, and α-ketoglutarate (α-KG)/2- hydroxyglutarate (2-HG) ratios. A better definition of the molecular mechanisms at the basis of their pathogenesis could improve not only the clinical approach in terms of diagnosis, prognosis, and therapy of these myopathies but also deepen the knowledge of mitochondrial medicine in general.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献