Clinical Pharmacokinetics of Approved RNA Therapeutics

Author:

Jo Seong Jun,Chae Soon Uk,Lee Chae Bin,Bae Soo KyungORCID

Abstract

RNA-mediated drugs are a rapidly growing class of therapeutics. Over the last five years, the list of FDA-approved RNA therapeutics has expanded owing to their unique targets and prolonged pharmacological effects. Their absorption, distribution, metabolism, and excretion (ADME) have important clinical im-plications, but their pharmacokinetic properties have not been fully understood. Most RNA therapeutics have structural modifications to prevent rapid elimination from the plasma and are administered intravenously or subcutaneously, with some exceptions, for effective distribution to target organs. Distribution of drugs into tissues depends on the addition of a moiety that can be transported to the target and RNA therapeutics show a low volume of distribution because of their molecular size and negatively-charged backbone. Nucleases metabolize RNA therapeutics to a shortened chain, but their metabolic ratio is relatively low. Therefore, most RNA therapeutics are excreted in their intact form. This review covers not only ADME features but also clinical pharmacology data of the RNA therapeutics such as drug–drug interaction or population pharmacokinetic analyses. As the market of RNA therapeutics is expected to rapidly expand, comprehensive knowledge will contribute to interpreting and evaluating the pharmacological properties.

Funder

National Research Foundation of Korea

Ministry of Health & Welfare

Research Fund of The Catholic University of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in RNA therapeutics for modulation of ‘undruggable’ targets;Progress in Molecular Biology and Translational Science;2024

2. miRNA-Based Technologies in Cancer Therapy;Journal of Personalized Medicine;2023-11-09

3. Antiviral Efficacy of RNase H-Dependent Gapmer Antisense Oligonucleotides against Japanese Encephalitis Virus;International Journal of Molecular Sciences;2023-10-02

4. miRNAs: The Road from Bench to Bedside;Genes;2023-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3