An Injectable Hydrogel Scaffold Loaded with Dual-Drug/Sustained-Release PLGA Microspheres for the Regulation of Macrophage Polarization in the Treatment of Intervertebral Disc Degeneration

Author:

Cheng Haozhe,Guo Qian,Zhao Hongjian,Liu Kun,Kang Honglei,Gao Fang,Guo Jianfeng,Yuan Xi,Hu Shuang,Li Feng,Yang Qin,Fang Zhong

Abstract

Due to the unique physical characteristics of intervertebral disc degeneration (IVDD) and the pathological microenvironment that it creates, including inflammation and oxidative stress, effective self-repair is impossible. During the process of intervertebral disc degeneration, there is an increase in the infiltration of M1 macrophages and the secretion of proinflammatory cytokines. Here, we designed a novel injectable composite hydrogel scaffold: an oligo [poly (ethylene glycol) fumarate]/sodium methacrylate (OPF/SMA) hydrogel scaffold loaded with dual-drug/sustained-release PLGA microspheres containing IL-4 (IL-4-PLGA) and kartogenin (KGN-PLGA). This scaffold exhibited good mechanical properties and low immunogenicity while also promoting the sustained release of drugs. By virtue of the PLGA microspheres loaded with IL-4 (IL-4-PLGA), the composite hydrogel scaffold induced macrophages to transition from the M1 phenotype into the M2 phenotype during the early induced phase and simultaneously exhibited a continuous anti-inflammatory effect through the PLGA microspheres loaded with kartogenin (KGN-PLGA). Furthermore, we investigated the mechanisms underlying the immunomodulatory and anti-inflammatory effects of the composite hydrogel scaffold. We found that the scaffold promoted cell proliferation and improved cell viability in vitro. While ensuring mechanical strength, this composite hydrogel scaffold regulated the local inflammatory microenvironment and continuously repaired tissue in the nucleus pulposus via the sequential release of drugs in vivo. When degenerative intervertebral discs in a rat model were injected with the scaffold, there was an increase in the proportion of M2 macrophages in the inflammatory environment and higher expression levels of type II collagen and aggrecan; this was accompanied by reduced levels of MMP13 expression, thus exhibiting long-term anti-inflammatory effects. Our research provides a new strategy for promoting intervertebral disc tissue regeneration and a range of other inflammatory diseases.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3