Overexpression of Mtr-miR319a Contributes to Leaf Curl and Salt Stress Adaptation in Arabidopsis thaliana and Medicago truncatula

Author:

Li MingnaORCID,Xu Lei,Zhang Lixia,Li Xiao,Cao Chunyu,Chen LinORCID,Kang Junmei,Yang Qingchuan,Liu Yajiao,Sod Bilig,Long Ruicai

Abstract

Salt stress is a worldwide agronomic issue that limits crop yield and quality. Improving salt stress tolerance via genetic modification is the most efficient method to conquer soil salinization problems in crops. Crop miRNAs have been declared to be tightly associated with responding and adapting to salt stress and are advantageous for salt tolerance modification. However, very few studies have validated vital salt tolerance miRNAs and coupled potent target genes in Medicago species, the most economically important forage legume species. In this study, Mtr-miR319a, a miRNA that was identified from the previous next-generation sequencing assay of salt-treated Medicago truncatula, was overexpressed in M. truncatula and Arabidopsis thaliana, inducing the curly leaves and salt stress tolerance phenotypes. Combining the elevated expression level of Mtr-miR319a in the M. truncatula overexpression lines under normal and salt-treatment conditions, the regulatory roles of Mtr-miR319a in leaf development and salt stress adaptation were demonstrated. Several predicted target genes of Mtr-miR319a were also regulated by Mtr-miR319a and were associated with the aforementioned phenotypes in M. truncatula plants, most notably MtTCP4. Our study clarified the functional role of Mtr-miR319a and its target genes in regulating leaf development and defending salt stress, which can help to inform crop breeding efforts for improving salt tolerance via genetic engineering.

Funder

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

Key Projects in Science and Technology of Inner Mongolia

Key Research and Development Project of Ningxia Hui Autonomous Region

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3