Inhibitory Effects of Ursolic Acid on the Stemness and Progression of Human Breast Cancer Cells by Modulating Argonaute-2

Author:

Liao Wen-Ling,Liu Yu-Fan,Ying Tsung-Ho,Shieh Jia-Ching,Hung Yueh-Tzu,Lee Huei-Jane,Shen Chen-Yang,Cheng Chun-Wen

Abstract

The stemness and metastasis of cancer cells are crucial features in determining cancer progression. Argonaute-2 (AGO2) overexpression was reported to be associated with microRNA (miRNA) biogenesis, supporting the self-renewal and differentiation characteristics of cancer stem cells (CSCs). Ursolic acid (UA), a triterpene compound, has multiple biological functions, including anticancer activity. In this study, we find that UA inhibits the proliferation of MDA-MB-231 and MCF-7 breast cancer cell lines using the CCK-8 assay. UA induced a significant decrease in the fraction of CSC in which it was examined by changes in the expression of stemness biomarkers, including the Nanog and Oct4 genes. UA altered invasion and migration capacities by significant decreases in the levels of epithelial-to-mesenchymal transition (EMT) proteins of slug and vimentin. Furthermore, the co-reduction in oncogenic miRNA levels (miR-9 and miR-221) was a result of the down-modulation in AGO2 in breast cancer cells in vitro. Mechanically, UA increases PTEN expression to inactivate the FAK/PI3K/Akt/mTOR signaling pathway and the decreased level of c-Myc in quantitative RT-PCR and Western blot imaging analyses. Our current understanding of the anticancer potential of UA in interrupting between EMT programming and the state of CSC suggests that UA can contribute to improvements in the clinical practice of breast cancer.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference48 articles.

1. Molecular basis of metastasis;Chiang;N. Engl. J. Med.,2008

2. Mechanisms of metastasis;Hunter;Breast Cancer Res.,2008

3. Tumor progression and metastasis;Yokota;Carcinogenesis,2000

4. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells;Kim;Clin. Cancer Res.,2002

5. Increased Cellular Levels of MicroRNA-9 and MicroRNA-221 Correlate with Cancer Stemness and Predict Poor Outcome in Human Breast Cancer;Cheng;Cell. Physiol. Biochem.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3