Author:
Yuan Chanling,Wang Zhixiang,Wang Zongtao,Liu Wentao,Li Guohu,Meng Jinlan,Wu Ruzhen,Wu Qiong,Wang Jiacheng,Mei Wenjie
Abstract
Currently, effective drugs for triple-negative breast cancer (TNBC) are lacking in clinics. c-myc is one of the core members during TNBC tumorigenesis, and G-rich sequences in the promoter region can form a G-quadruplex conformation, indicating that the c-myc inhibitor is a possible strategy to fight cancer. Herein, a series of chiral ruthenium(II) complexes ([Ru(bpy)2(DPPZ-R)](ClO4)2, Λ/Δ−1: R = -H, Λ/Δ−2: R = -Br, Λ/Δ−3: R = -C≡C(C6H4)NH2) were researched based on their interaction with c-myc G-quadruplex DNA. Λ−3 and Δ−3 show high affinity and stability to decrease their replication. Additional studies showed that Λ−3 and Δ−3 exhibit higher inhibition against different tumor cells than other molecules. Δ−3 decreases the viability of MDA-MB-231 cells with an IC50 of 25.51 μM, which is comparable with that of cisplatin, with an IC50 of 25.9 μM. Moreover, Δ−3 exhibits acceptable cytotoxic activity against MDA-MB-231 cells in a zebrafish xenograft breast cancer model. Further studies suggested that Δ−3 decreases the viability of MDA-MB-231 cells predominantly through DNA-damage-mediated apoptosis, which may be because Δ−3 can induce DNA damage. In summary, the results indicate that Ru(II) complexes containing alkinyl groups can be developed as c-myc G-quadruplex DNA binders to block TNBC progression.
Funder
National Natural Science Foundation of China
Innovation Team Projects in Universities of Guangdong Province
Project of Department of Education of Guangdong Provincial
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献