MFTR-Net: A Multi-Level Features Network with Targeted Regularization for Large-Scale Point Cloud Classification

Author:

Liu Ruyu12,Zhang Zhiyong3,Dai Liting4,Zhang Guodao4ORCID,Sun Bo2

Affiliation:

1. School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China

2. Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Quanzhou 362000, China

3. School of Computer Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

4. Department of Digital Media Technology, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

There are some irregular and disordered noise points in large-scale point clouds, and the accuracy of existing large-scale point cloud classification methods still needs further improvement. This paper proposes a network named MFTR-Net, which considers the local point cloud’s eigenvalue calculation. The eigenvalues of 3D point cloud data and the 2D eigenvalues of projected point clouds on different planes are calculated to express the local feature relationship between adjacent point clouds. A regular point cloud feature image is constructed and inputs into the designed convolutional neural network. The network adds TargetDrop to be more robust. The experimental result shows that our methods can learn more high-dimensional feature information, further improving point cloud classification, and our approach can achieve 98.0% accuracy with the Oakland 3D dataset.

Funder

Research Foundation of Hangzhou Dianzi University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference29 articles.

1. Cross-modal 360° depth completion and reconstruction for large-scale indoor environment;Liu;IEEE Trans. Intell. Transp. Syst.,2022

2. Zhang, G., Weng, H., Liu, R., Zhang, M., and Zhang, Z. (2022, January 4–6). Point Clouds Classification of Large Scenes based on Blueprint Separation Convolutional Neural Network. Proceedings of the 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Hangzhou, China.

3. Using random forest to select and classify features of airborne LiDAR data in urban area;Sun;J. Wuhan Univ.,2014

4. Fang, J., Zhou, D., Zhao, J., Tang, C., Xu, C.Z., and Zhang, L. (2023). LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D Object Detection. arXiv.

5. Deep learning for 3d point clouds: A survey;Guo;IEEE Trans. Pattern Anal. Mach. Intell.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3