MLP-mmWP: High-Precision Millimeter Wave Positioning Based on MLP-Mixer Neural Networks

Author:

Zheng Yadan1,Huang Bin2,Lu Zhiping13

Affiliation:

1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China

3. State Key Laboratory of Wireless Mobile Communications, China Academy of Telecommunications Technology (CATT), Beijing 100876, China

Abstract

Millimeter wave (MMW) communication, noted for its merit of wide bandwidth and high-speed transmission, is also a competitive implementation of the Internet of Everything (IoE). In an always-connected world, mutual data transmission and localization are the primary issues, such as the application of MMW application in autonomous vehicles and intelligent robots. Recently, artificial intelligence technologies have been adopted for the issues in the MMW communication domain. In this paper, MLP-mmWP, a deep learning method, is proposed to localize the user with respect to MMW communication information. The proposed method employs seven sequences of beamformed fingerprints (BFFs) to estimate localization, which includes line-of-sight (LOS) and non-line-of-sight (NLOS) transmissions. As far as we know, MLP-mmWP is the first method to apply the MLP-Mixer neural network to the task of MMW positioning. Moreover, experimental results in a public dataset demonstrate that MLP-mmWP outperforms the existing state-of-the-art methods. Specifically, in a simulation area of 400 × 400 m2, the positioning mean absolute error is 1.78 m, and the 95th percentile prediction error is 3.96 m, representing improvements of 11.8% and 8.2%, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3