Using Artificial Neuro-Molecular System in Robotic Arm Motion Control—Taking Simulation of Rehabilitation as an Example

Author:

Chen Jong-Chen

Abstract

Under the delicate control of the brain, people can perform graceful movements through the coordination of muscles, bones, ligaments, and joints. If artificial intelligence can be used to establish a control system that simulates the movements of human arms, it is believed that the application scope of robotic arms in assisting people’s daily life can be greatly increased. The purpose of this study is to build a general system that can use intelligent techniques to assist in the construction of a personalized rehabilitation system. More importantly, this research hopes to establish an intelligent system that can be adjusted according to the needs of the problem domain, that is, the system can move toward the direction of problem-solving through autonomous learning. The artificial neural molecular system (ANM system), developed early in our laboratory, which captured the close structure/function relationship of biological systems, was used. The system was operated on the V-REP (Virtual Robot Experimentation Platform). The results show that the ANM system can use self-learning methods to adjust the start-up time, rotation angle, and the sequence of the motor operation of different motors in order to complete the designated task assignment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3