Design and Reliability Analysis of a Novel Redundancy Topology Architecture

Author:

Li Fei,Liu Wenyi,Gao Wanjia,Liu Yanfang,Hu YanjunORCID

Abstract

Topology architecture has a decisive influence on network reliability. In this paper, we design a novel redundancy topology and analyze the structural robustness, the number of redundant paths between two terminal nodes, and the reliability of the proposed topology by using natural connectivity and time-independent and time-dependent terminal pair reliability, k-terminal reliability, and all-terminal reliability comprehensively and quantitatively, and we compare these measures of the proposed topology with AFDX in three scenarios. The evaluations show that in the structural robustness analysis, when no nodes are removed, the natural connectivity of the proposed topology with 10 nodes, 16 nodes, and 20 nodes is 77.8%, 26.95%, and 81.39% higher than that of AFDX, respectively. In the time-independent reliability analysis, when the link reliability is 0.9, terminal pair reliability of the proposed topology with 10 nodes, 16 nodes, and 20 nodes is 5.78%, 17.75%, and 34.65% higher than that of AFDX, respectively; k-terminal reliability is 10.04%, 31.97%, and 53.74% higher than that of AFDX, respectively; and all-terminal reliability is 29.36%, 74.37%, and 107.91% higher than that of AFDX, respectively. In the time-dependent reliability analysis, when the operating time is 8000 h, the terminal pair reliability of the proposed topology with 10 nodes, 16 nodes, and 20 nodes is 3.53%, 10.87%, and 21.08% higher than that of AFDX, respectively; the k-terminal reliability is 6.20%, 19.65%, and 32.58% higher than that of AFDX, respectively; and the all-terminal reliability is 18.25%, 45.04%, and 63.86% higher than that of AFDX, respectively. The proposed topology increases the redundant paths of data transmission. It ensures reliable data transmission and has high robustness and reliability. It provides a new idea for improving the reliability of industrial buses.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3