A Method to Realize Efficient Deep-Red Phosphorescent OLEDs with a Broad Spectral Profile and Low Operating Voltages

Author:

Chen Wei-Ling,Chen Shan-Yu,Huang Dun-Cheng,Luo Dian,Chen Hsueh-Wen,Wang Chih-Yuan,Chang Chih-HaoORCID

Abstract

Organic light-emitting diodes (OLEDs) used as phototherapy light sources require sufficient spectral distribution in the effective wavelength ranges and low operating voltages. Herein, a double emitting layer structure consisting of a red-emitting Ir(piq)2acac and a deep-red Ir(fliq)2acac was designed to generate a broad electroluminescence spectrum. An efficient TCTA:CN-T2T exciplex system was used as the host of the emitting layer, facilitating effective energy transfer from the exciplex host to the red and deep-red phosphors. The materials used in the exciplex host were also used as the carrier transport layers to eliminate the energy barriers and thus increase the current density. The hole injection layer structures were varied to examine the hole injection capabilities and the carrier balance. The resulting optimized phosphorescent OLEDs with a broad spectral profile exhibit a 90% coverage ratio in the target ranges from 630 to 690 nm, together with a high peak efficiency of 19.1% (10.2 cd/A and 13.8 lm/W). The proposed device only needs 5.2 V to achieve a power density of 5 mW/cm2, implying that the device could be driven via two series-connected button cell batteries. These results illustrate the feasibility of our design concepts and demonstrate the realization of a portable and lightweight OLED phototherapy light source.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3