Degradation Status Recognition of Axial Piston Pumps under Variable Conditions Based on Improved Information Entropy and Gaussian Mixture Models

Author:

Lu ChuanqiORCID,Zheng Zhi,Wang Shaoping

Abstract

Axial piston pumps are crucial for the safe operation of hydraulic systems and usually work under variable operating conditions. However, deterioration status recognition for such pumps under variable conditions has rarely been reported until now. Therefore, it is valuable to develop effective methods suitable for processing variable conditions. Firstly, considering that information entropy has strong robustness to variable conditions and empirical mode decomposition (EMD) has the advantages of processing nonlinear and nonstationary signals, a new degradation feature parameter, named local instantaneous energy moment entropy, which combines information entropy theory and EMD, is proposed in this paper. To obtain more accurate degradation feature, a waveform matching extrema mirror extension EMD, which is used to suppress the end effects of EMD decomposition, was employed to decompose the original pump’s outlet pressure signals, taking the quasi-periodic characteristics of the signals into consideration. Subsequently, given that different failure modes of pumps have different degradation rates in practice, which makes it difficult to effectively recognize degradation status when using the modeling methods that need the normal and failure data, a Gaussian mixture model (GMM), which has no need for failure data when building a degradation identification model, was introduced to capture the new degradation status index (DSI) to quantitatively assess the degradation state of the pumps. Finally, the effectiveness of the proposed approach was validated using both simulations and experiments. It was demonstrated that the defined local instantaneous energy moment entropy is able to effectively characterize the degree of degradation of the pumps under variable operating conditions, and the DSI derived from the GMM is able to accurately identify different degradation states when compared with the previously published methods.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3