Abstract
Hyperhomocysteinemia (hHcy) represents a strong risk factor for atherosclerosis-associated diseases, like stroke, dementia or Alzheimer’s disease. A methionine (Met)-rich diet leads to an elevated level of homocysteine in plasma and might cause pathological alterations across the brain. The hippocampus is being constantly studied for its selective vulnerability linked with neurodegeneration. This study explores metabolic and histo-morphological changes in the rat hippocampus after global ischemia in the hHcy conditions using a combination of proton magnetic resonance spectroscopy and magnetic resonance-volumetry as well as immunohistochemical analysis. After 4 weeks of a Met-enriched diet at a dose of 2 g/kg of animal weight/day, adult male Wistar rats underwent 4-vessel occlusion lasting for 15 min, followed by a reperfusion period varying from 3 to 7 days. Histo-morphological analyses showed that the subsequent ischemia-reperfusion insult (IRI) aggravates the extent of the sole hHcy-induced degeneration of the hippocampal neurons. Decreased volume in the grey matter, extensive changes in the metabolic ratio, deeper alterations in the number and morphology of neurons, astrocytes and their processes were demonstrated in the hippocampus 7 days post-ischemia in the hHcy animals. Our results suggest that the combination of the two risk factors (hHcy and IRI) endorses and exacerbates the rat hippocampal neurodegenerative processes.
Subject
Molecular Biology,Biochemistry
Reference73 articles.
1. Methionine diet-induced hyperhomocysteinemia accelerates cerebral aneurysm formation in rats
2. Nutrient patterns and brain biomarkers of Alzheimer’s disease in cognitively normal individuals
3. A novel rat model of heart failure induced by high methionine diet showing evidence of association between hyperhomocysteinemia and activation of NF-kappaB;Liu;Am. J. Transl. Res.,2016
4. The Contribution of Homocysteine Metabolism Disruption to Endothelial Dysfunction: State-of-the-Art
5. Ischemic brain injury in hyperhomocysteinemic conditions and the development of Alzheimer’s disease;Lehotsky,2019
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献