Considerations and Challenges for Real-World Deployment of an Acoustic-Based COVID-19 Screening System

Author:

Grant Drew,McLane Ian,Rennoll ValerieORCID,West James

Abstract

Coronavirus disease 2019 (COVID-19) has led to countless deaths and widespread global disruptions. Acoustic-based artificial intelligence (AI) tools could provide a simple, scalable, and prompt method to screen for COVID-19 using easily acquirable physiological sounds. These systems have been demonstrated previously and have shown promise but lack robust analysis of their deployment in real-world settings when faced with diverse recording equipment, noise environments, and test subjects. The primary aim of this work is to begin to understand the impacts of these real-world deployment challenges on the system performance. Using Mel-Frequency Cepstral Coefficients (MFCC) and RelAtive SpecTrAl-Perceptual Linear Prediction (RASTA-PLP) features extracted from cough, speech, and breathing sounds in a crowdsourced dataset, we present a baseline classification system that obtains an average receiver operating characteristic area under the curve (AUC-ROC) of 0.77 when discriminating between COVID-19 and non-COVID subjects. The classifier performance is then evaluated on four additional datasets, resulting in performance variations between 0.64 and 0.87 AUC-ROC, depending on the sound type. By analyzing subsets of the available recordings, it is noted that the system performance degrades with certain recording devices, noise contamination, and with symptom status. Furthermore, performance degrades when a uniform classification threshold from the training data is subsequently used across all datasets. However, the system performance is robust to confounding factors, such as gender, age group, and the presence of other respiratory conditions. Finally, when analyzing multiple speech recordings from the same subjects, the system achieves promising performance with an AUC-ROC of 0.78, though the classification does appear to be impacted by natural speech variations. Overall, the proposed system, and by extension other acoustic-based diagnostic aids in the literature, could provide comparable accuracy to rapid antigen testing but significant deployment challenges need to be understood and addressed prior to clinical use.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3