Learning for Data Synthesis: Joint Local Salient Projection and Adversarial Network Optimization for Vehicle Re-Identification

Author:

Chen YanbingORCID,Ke WeiORCID,Zhang WeiORCID,Wang CuiORCID,Sheng HaoORCID,Xiong ZhangORCID

Abstract

The problem of vehicle re-identification in surveillance scenarios has grown in popularity as a research topic. Deep learning has been successfully applied in re-identification tasks in the last few years due to its superior performance. However, deep learning approaches require a large volume of training data, and it is particularly crucial in vehicle re-identification tasks to have a sufficient amount of varying image samples for each vehicle. To collect and construct such a large and diverse dataset from natural environments is labor intensive. We offer a novel image sample synthesis framework to automatically generate new variants of training data by augmentation. First, we use an attention module to locate a local salient projection region in an image sample. Then, a lightweight convolutional neural network, the parameter agent network, is responsible for generating further image transformation states. Finally, an adversarial module is employed to ensure that the images in the dataset are distorted, while retaining their structural identities. This adversarial module helps to generate more appropriate and difficult training samples for vehicle re-identification. Moreover, we select the most difficult sample and update the parameter agent network accordingly to improve the performance. Our method draws on the adversarial networks strategy and the self-attention mechanism, which can dynamically decide the region selection and transformation degree of the synthesis images. Extensive experiments on the VeRi-776, VehicleID, and VERI-Wild datasets achieve good performance. Specifically, our method outperforms the state-of-the-art in MAP accuracy on VeRi-776 by 2.15%. Moreover, on VERI-Wil, a significant improvement of 7.15% is achieved.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Macao Polytechnic University

Open Fund of the State Key Laboratory of Software Development Environment

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3