Design, Optimization, and Experimental Evaluation of Slow Light Generated by π-Phase-Shifted Fiber Bragg Grating for Use in Sensing Applications

Author:

Vaňko Matúš1,Glesk Ivan2ORCID,Müllerová Jarmila3,Dubovan Jozef1,Dado Milan1

Affiliation:

1. Department of Multimedia and Information-Communication Technologies, Faculty of Electrical Engineering and Information Technology, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia

2. Electronic and Electrical Engineering Department, University of Strathclyde, 204 George Street, Glasgow G1 1XW, UK

3. Institute of Aurel Stodola, Faculty of Electrical Engineering and Information Technology, University of Žilina, Komenského 843, 031 01 Liptovský Mikuláš, Slovakia

Abstract

This paper describes design, theoretical analysis, and experimental evaluation of a π-Phase-Shifted Fiber Bragg Grating (π-PSFBG) inscribed in the standard telecom fiber for slow light generation. At first, the grating was designed for its use in the reflection mode with a central wavelength of 1552 nm and a pass band width of less than 100 pm. The impact of fabrication imperfections was experimentally investigated and compared to model predictions. The optical spectra obtained experimentally show that the spectral region used for slow light generation is narrower (less than 10 pm), thus allowing for too-low levels of slow light optical-output power. In the next step, the optimization of the grating design was conducted to account for fabrication errors, to improve the grating’s spectral behavior and its temporal performance, and to widen the spectral interval for slow light generation in the grating’s transmission mode. The targeted central wavelength was 1553 nm. The π-PSFBG was then commercially fabricated, and the achieved parameters were experimentally investigated. For the region of (1551–1554) nm, a 15-fold increase in the grating’s pass band width was achieved. We have shown that a pair of retarded optical pulses were generated. The measured group delay was found to be ~10.5 ps (compared to 19 ps predicted by the model). The π-PSFBG operating in its transmission mode has the potential to operate as tunable delay line for applications in RF photonics, ultra-fast signal processing, and optical communications, where tunable high precision delay lines are highly desirable. The π-PSFBG can be designed and used for the generation of variable group delays from tens to hundreds of ps, depending on application needs.

Funder

Slovak Research and Development Agency

Slovak Grant Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3