Assessment of Word-Level Neural Language Models for Sentence Completion

Author:

Park HeewoongORCID,Park Jonghun

Abstract

The task of sentence completion, which aims to infer the missing text of a given sentence, was carried out to assess the reading comprehension level of machines as well as humans. In this work, we conducted a comprehensive study of various approaches for the sentence completion based on neural language models, which have been advanced in recent years. First, we revisited the recurrent neural network language model (RNN LM), achieving highly competitive results with an appropriate network structure and hyper-parameters. This paper presents a bidirectional version of RNN LM, which surpassed the previous best results on Microsoft Research (MSR) Sentence Completion Challenge and the Scholastic Aptitude Test (SAT) sentence completion questions. In parallel with directly applying RNN LM to sentence completion, we also employed a supervised learning framework that fine-tunes a large pre-trained transformer-based LM with a few sentence-completion examples. By fine-tuning a pre-trained BERT model, this work established state-of-the-art results on the MSR and SAT sets. Furthermore, we performed similar experimentation on newly collected cloze-style questions in the Korean language. The experimental results reveal that simply applying the multilingual BERT models for the Korean dataset was not satisfactory, which leaves room for further research.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference47 articles.

1. A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task;Chen,2016

2. The Goldilocks Principle: Reading Children’s Books with Explicit Memory Representations;Hill;arXiv,2016

3. Computational Approaches to Sentence Completion;Zweig,2012

4. A Challenge Set for Advancing Language Modeling;Zweig,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3