Study of Lead Rubber Bearings for Vibration Reduction in High-Tech Factories

Author:

Ju Shen-HawORCID,Yuantien Cheng-Chun,Hsieh Wen-Ko

Abstract

This paper studies the seismic and micro vibrations of the high-tech factory with and without lead rubber bearings (LRBs) using the three-dimensional (3D) finite element analysis. The soil-structure interaction is included using the p-y, t-z, and Q-z nonlinear soil springs, while the time-history analysis is performed under seismic, wind, or moving crane loads. The finite element results indicate that the moving crane does not change the major ambient vibrations of the factory with and without LRBs. For a normal design of LRBs, the high-tech factory with LRBs can decrease the seismic base shear efficiently but will have a much larger wind-induced vibration than that without LRBs, especially for the reinforced concrete level. Because micro-vibration is a major concern for high-tech factories, one should use LRBs with a large initial stiffness to resist wind loads, and use a small final LRB stiffness to reduce the seismic load of high-tech factories. This situation may make it difficult to obtain a suitable LRB, but it is an opportunity to reduce the seismic response without increasing the micro-vibration of high-tech factories.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3