Abstract
Awareness of the logic and context of original (and subsequent) design priorities is critical to informing decisions relating to valorisation, repair, refurbishment, energy retrofit or re-use of built heritage. A key benefit of collating data through Historic Building Information Modelling (HBIM) should be to assist others facing similar challenges. Here, examples for sharing understanding of how components belong to a system are outlined in the context of a newly completed dataset of public library buildings in the UK funded by Andrew Carnegie, predominantly built between 1900 and 1914. Demands for the functionality and economy of public library buildings, coupled with the emergent standardisation of building components at the time, provide a specific condition with potential for further iteration to other buildings of the period or related typologies. The work highlights the urgency of providing cost-efficient knowledge sharing structures in an era of altered priorities with respect to energy use for modern heritage. We propose the means for mapping common features to network knowledge amongst stakeholders through relevant open source pathways. The results demonstrate that integrating geographic approaches to knowledge sharing in HBIM with environmental considerations also supports wider questions of risk management related to the stewardship of historic buildings in the context of climate change.
Funder
Arts and Humanities Research Council
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献