Effective Assessment of Blast-Induced Ground Vibration Using an Optimized Random Forest Model Based on a Harris Hawks Optimization Algorithm

Author:

Yu Zhi,Shi Xiuzhi,Zhou JianORCID,Chen XinORCID,Qiu Xianyang

Abstract

Most mines choose the drilling and blasting method which has the characteristics of being a cheap and efficient method to fragment rock mass, but blast-induced ground vibration damages the surrounding rock mass and structure and is a drawback. To predict, analyze and control the blast-induced ground vibration, the random forest (RF) model, Harris hawks optimization (HHO) algorithm and Monte Carlo simulation approach were utilized. A database consisting of 137 datasets was collected at different locations around the Tonglvshan open-cast mine, China. Seven variables were selected and collected as the input variables, and peak particle velocity was chosen as the output variable. At first, an RF model and a hybrid model, namely a HHO-RF model, were developed, and the prediction results checked by 3 performance indices to show that the proposed HHO-RF model can provide higher prediction performance. Then blast-induced ground vibration was simulated by using the Monte Carlo simulation approach and the developed HHO-RF model. After analyzing, the mean peak particle velocity value was 0.98 cm/s, and the peak particle velocity value did not exceed 1.95 cm/s with a probability of 90%. The research results of this study provided a simple, accurate method and basis for predicting, evaluating blast-induced ground vibration and optimizing the blast design before blast operation.

Funder

National Natural Science Foundation Project of China

Fundamental Research Funds for Central Universities of the Central South University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3