Abstract
An open quantum bipartite system consisting of two independent two-level atoms interacting nonlinearly with a two-mode electromagnetic cavity field is investigated by proposing a suitable non-Hermitian generalization of the Hamiltonian. The mathematical procedure of obtaining the corresponding wave function of the system is clearly given. Pancharatnam phase is studied to give a precise information about the required initial system state, which is related to artificial phase jumps, to control the degree of entanglement (DEM) and get the highest concurrence. We discuss the effect of time-variation coupling, and dissipation of both atoms and cavity. The effect of the time-variation function appears as frequency modulation (FM) effect in the radio waves. Concurrence rapidly reaches the disentangled state (death of entanglement) by increasing the effect of field decay. On the contrary, the atomic decay has no effect.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献