Characterization and Control for the Laminar Flow of Liquid Polyurethane System in a Wide Angle Diffuser with Transversely Arrayed Obstacles

Author:

Son ,Lee ,Chang

Abstract

In the manufacturing process of hard-board poly-urethane foams, the uniformity is a very important issue for the raw compound of the liquid poly-urethane system flow for the quality control of such products. One of the universal methods to generate more uniform flow is that some obstacles are located inside the diffuser at the end of injector. For the regime of non-Newtonian laminar flow, better flow uniformity can be achieved with the enhancement of mixing in the wake after the resistive obstacles. In this research, the parametric study is made for the gap interval between adjacent obstacle components as well as the cross-sectional shape with a computational fluid dynamics (CFD) technique. The flow fields around circular and elliptic cylinders are visualized for flow velocity and vorticity with the comparison of root-mean-square (RMS) error for the deviation of velocity at the outlet as a lumped parameter to estimate flow uniformity and mixing. When the blockage ratio is fixed 0.3 for the pipe of Reynolds number 58.5 based on its diameter, eliminating the effect of wall boundary ratio with the classical Blasius velocity profile, the RMS error is reduced 77% to 92% from the baseline case in the case of 60%-diameter gaps for the figure of circles and 2:1 longitudinal ellipse, respectively. The flow is visualized around obstacle components with vorticity as well as flow velocity where the three-dimensional components of vorticity vector are also elucidated in physics for the evolution of complex multi-dimensional flow wake.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3