Accuracy Evaluation of Geoid Heights in the National Control Points of South Korea Using High-Degree Geopotential Model

Author:

Kim Kwang BaeORCID,Yun Hong Sik,Choi Ha Jung

Abstract

Precise geoid heights are not as important for understanding Earth’s gravity field, but they are important to geodesy itself, since the vertical datum is defined as geoid in a cm-level accuracy. Several high-degree geopotential models have been derived lately by using satellite tracking data such as those from Gravity Recovery and Climate Experiment (GRACE) and Gravity Field and Steady-State Ocean Circulation Explorer (GOCE), satellite altimeter data, and terrestrial and airborne gravity data. The Korean national geoid (KNGeoid) models of the National Geographic Information Institute (NGII) were developed using the latest global geopotential models (GGMs), which are combinations of gravity data from satellites and land gravity data. In this study, geoid heights calculated from the latest high-degree GGMs were used to evaluate the accuracy of the three GGMs (European Improved Gravity model of Earth by New techniques (EIGEN)-6C4, Earth Gravitational Model 2008 (EGM2008), and GOCE-EGM2008 combined model (GECO)) by comparing them with the geoid heights derived from the Global Navigation Satellite System (GNSS)/leveling of the 1182 unified control points (UCPs) that have been installed by NGII in South Korea since 2008. In addition, the geoid heights derived from the KNGeoid models were compared with the geoid heights derived from the GNSS/leveling of the 1182 UCPs to assess the accuracy of the KNGeoid models in terms of relative geoid heights for further gravimetric geoid determination studies in South Korea. As a result, the EGM2008 model could be selected as the suitable GGM from among the three GGMs for determining a gravimetric geoid model for South Korea.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference25 articles.

1. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96;Lemoine,1998

2. A High Resolution Global Gravity Field Model Combining CHAMP and GRACE Satellite Mission and Surface Data: EIGEN-CG01C;Reigber,2006

3. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3