Research on the Internal Thermal Boundary Conditions of Concrete Closed Girder Cross-Sections under Historically Extreme Temperature Conditions

Author:

Lin Jianhui,Xue JunqingORCID,Huang Fuyun,Chen Baochun

Abstract

The accuracy of the finite element model (FEM) for concrete closed girder cross-sections is significantly influenced by thermal boundary conditions. The internal thermal boundary conditions can be simulated by inputting the convection heat transfer coefficient and the temperatures inside the cavities or by establishing air elements in the FEM. In order to analyze the influence of different simulation methods for the internal thermal boundary conditions on temperature distributions for concrete closed girder cross-sections, the temperature distributions on the cross-sections of a box girder, small box girders, and adjacent box girders were monitored, and the corresponding FEMs were implemented. By comparing the temperature data obtained from the field test and FEMs, the numerical hourly temperature curves calculated by using the measured temperatures inside the cavities provide the closest agreement with the measured results; however, the measurements of the temperatures on site are cost- and time-prohibitive. When there is a lack of measured temperatures inside the cavities, the numerical hourly temperature curves calculated by establishing air elements in the FEM provide the closest agreement. The influences of different simulation methods for the internal thermal boundary conditions on the highest hourly average effective temperatures and the trends of the vertical temperature gradients for concrete closed girder cross-sections were small. The FEM with air elements can be adopted to analyze the temperature distributions on concrete closed girder cross-sections under historically extreme temperature conditions. It can be predicted that the longitudinal thermal movement of concrete closed girders would be underestimated by considering variations in the one-year measured average effective temperature of the cross-sections or the Chinese-code-specified design effective temperature for the highway bridge structures, which are thus unconservative for engineering applications. The Chinese-code-specified design vertical temperature gradients are conservative for the bridge deck surface and unconservative for the bottom flange.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3