Superpixel Segmentation of Hyperspectral Images Based on Entropy and Mutual Information

Author:

Lin LianleiORCID,Zhang Shanshan

Abstract

Superpixel segmentation (SS) methods have been proven to be feasible in improving the performance of hybrid algorithms on hyperspectral images (HSIs). In this paper, a superpixel segmentation algorithm based on the information measures with color histogram driving (IM-CHD) was proposed. First, Shannon entropy was applied to measure the image information and preliminarily select spectral bands. Mutual information (MI) is derived from the concept of entropy and measures the statistical dependence between two random variables. Also, MI can effectively identify the redundant spectral bands. Therefore, in this paper, both MI and color matching functions (CMF) were used to select the most useful spectral bands. Second, the selected spectral bands were combined into a false color image containing the main spectral information. A local optimization algorithm named “hill climbing” was used to achieve the superpixel segmentation. Finally, parameter selection experiments and comparative experiments were performed on two hyperspectral data sets. The experimental results showed that the IM-CHD method was more efficient and accurate than other state-of-the-art methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

1. Advances in Spectral-Spatial Classification of Hyperspectral Images

2. An Efficient Method for Supervised Hyperspectral Band Selection

3. Spatial Mutual Information Based Hyperspectral Band Selection for Classification

4. Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis;Kwarteng;Photogramm. Eng. Remote Sens.,1989

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3