Roughening in Nonlinear Surface Growth Model

Author:

Bognár GabriellaORCID

Abstract

The aim of this paper is to examine the coarsening process in the evolution of the surface morphology during molecular beam epitaxy (MBE). A numerical approach for modeling the evolution of surface roughening in film growth by MBE is proposed. The model is based on the nonlinear differential equations by Kuramoto–Sivashinsky (KS) namely, KS and CKS (conserved KS). In particular, we propose a “combined version” of KS and CKS equations, which is solved as a function of a parameter r for the 1 + 1 dimensional case. The computation provides film height as a function of space and time. From this quantity the change of the width of the film over time has numerically been studied as a function of r. The main result of the research is that the surface width is exponentially increasing with increasing time and the change in surface width for smaller r values is significantly greater over longer time interval.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytical and numerical study of diffusion propelled surface growth phenomena;Partial Differential Equations in Applied Mathematics;2024-09

2. Morphological properties of the interfaces growth of composite membranes;Materials Today: Proceedings;2022

3. Kardar-Parisi-Zhang interface growing equation with different noise terms;INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020;2022

4. Review on Relationship Between the Universality Class of the Kardar-Parisi-Zhang Equation and the Ballistic Deposition Model;International Journal of Applied Mechanics and Engineering;2021-12-01

5. Numerical Solutions of the Kardar-Parisi-Zhang Interface Growing Equation with Different Noise Terms;Vehicle and Automotive Engineering 3;2020-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3