Analysis of an Isolation System with Vertical Spring-viscous Dampers in Horizontal and Vertical Ground Motion

Author:

Hur Deog-JaeORCID,Hong Sung-Chul

Abstract

This paper proposes a new vibration isolation mounting system, with spherical balls and vertical spring dampers, that provides seismic protection from horizontal and vertical ground excitation. To characterize the system, nonlinear governing equations are derived by considering the kinematics and interaction forces of the structures, and the dynamic characteristics of the design parameters are investigated by numerical analysis. The condition of contact stability for sustaining continuous friction of the isolation device is discussed, along with the design parameters. The vibration transfer characteristics are analyzed for the displacement transfer ratio obtained for the design parameters satisfying the sustainable contact condition, when the base is harmonically excited. The results confirm that the relative motion occurrence satisfies the conditional expression, and a jump in which the transfer ratio suddenly increases at a specific frequency is identified. Finally, design variables that are suitable for the horizontal and vertical acceleration of the El Centro earthquake are set, and a simulation confirms the vibration reduction effect in both the horizontal and vertical motions.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

1. The severity of earthquake events – statistical analysis and classification

2. Advanced base isolation systems for light weight equipments;Tsai,2012

3. State Of Art Review - Base Isolation Systems For Structures;Patil;Int. J. Emerg. Technol. Adv. Eng.,2012

4. Sliding Isolation Systems: State-of-the-Art Review;Girish;IOSR-JMCE,2013

5. Introducing Orthogonal Roller Pairs as an effective isolating system for low rise buildings;Hosseini,2013

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3