Localisation of Vertical Auditory Phantom Image with Band-limited Reductions of Vertical Interchannel Crosstalk

Author:

Wallis RoryORCID,Lee HyunkookORCID

Abstract

Direct sound that is captured by the upper layer of a three-dimensional (3D) microphone array is typically regarded as vertical interchannel crosstalk (VIC), since it tends to produce an undesired effect of the sound source image being elevated from the ear-level loudspeaker layer position (0°) in reproduction. The present study examined the effectiveness of band-limited VIC attenuation methods on preventing the vertical image shift problem. In a subjective experiment, five natural sound sources were presented as vertically-oriented phantom images while using two stereophonic loudspeaker pairs elevated at 0° and 30° in front of the listener. The upper layer signal (i.e., VIC) was attenuated in various octave-band-dependent conditions that were based on vertical localisation thresholds obtained from previous studies. The results showed that it was possible to achieve the goal of panning the phantom image at the same height as the image produced by the main loudspeaker layer by attenuating only a single octave band with the centre frequency of 4 kHz or 8 kHz or multiple bands at 1 kHz and above. This has a useful practical implication in 3D sound recording and mixing where a vertically oriented phantom image is rendered.

Funder

Engineering and Physical Science Research Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Dolby Atmos http://www.dolby.com/us/en/brands/dolby-atmos.html

2. Listening Formats: Auro 3D http://www.auro-3d.com/system/listening-formats

3. The precedence effect

4. Spatial Hearing: The Psychophysics of Human Sound Localisation;Blauert,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multichannel 3D Microphone Arrays: A Review;Journal of the Audio Engineering Society;2021-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3