An Alternative Method for Shaking Force Balancing of the 3RRR PPM through Acceleration Control of the Center of Mass

Author:

Acevedo MarioORCID,Orvañanos-Guerrero María T.ORCID,Velázquez RamiroORCID,Arakelian Vigen

Abstract

The problem of shaking force balancing of robotic manipulators, which allows the elimination or substantial reduction of the variable force transmitted to the fixed frame, has been traditionally solved by optimal mass redistribution of the moving links. The resulting configurations have been achieved by adding counterweights, by adding auxiliary structures or, by modifying the form of the links from the early design phase. This leads to an increase in the mass of the elements of the mechanism, which in turn leads to an increment of the torque transmitted to the base (the shaking moment) and of the driving torque. Thus, a balancing method that avoids the increment in mass is very desirable. In this article, the reduction of the shaking force of robotic manipulators is proposed by the optimal trajectory planning of the common center of mass of the system, which is carried out by “bang-bang” profile. This allows a considerable reduction in shaking forces without requiring counterweights, additional structures, or changes in form. The method, already presented in the literature, is resumed in this case using a direct and easy to automate modeling technique based on fully Cartesian coordinates. This permits to express the common center of mass, the shaking force, and the shaking moment of the manipulator as simple analytic expressions. The suggested modeling procedure and balancing technique are illustrated through the balancing of the 3RRR planar parallel manipulator (PPM). Results from computer simulations are reported.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3