Body-Part-Aware and Multitask-Aware Single-Image-Based Action Recognition

Author:

Bhandari BhishanORCID,Lee GeonuORCID,Cho JungchanORCID

Abstract

Action recognition is an application that, ideally, requires real-time results. We focus on single-image-based action recognition instead of video-based because of improved speed and lower cost of computation. However, a single image contains limited information, which makes single-image-based action recognition a difficult problem. To get an accurate representation of action classes, we propose three feature-stream-based shallow sub-networks (image-based, attention-image-based, and part-image-based feature networks) on the deep pose estimation network in a multitasking manner. Moreover, we design the multitask-aware loss function, so that the proposed method can be adaptively trained with heterogeneous datasets where only human pose annotations or action labels are included (instead of both pose and action information), which makes it easier to apply the proposed approach to new data on behavioral analysis on intelligent systems. In our extensive experiments, we showed that these streams represent complementary information and, hence, the fused representation is robust in distinguishing diverse fine-grained action classes. Unlike other methods, the human pose information was trained using heterogeneous datasets in a multitasking manner; nevertheless, it achieved 91.91% mean average precision on the Stanford 40 Actions Dataset. Moreover, we demonstrated the proposed method can be flexibly applied to multi-labels action recognition problem on the V-COCO Dataset.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Human Motion Recognition in Sports Training Based on Deep Learning;2023 International Conference on Network, Multimedia and Information Technology (NMITCON);2023-09-01

2. A Progressive Region-Focused Network for Fine-Grained Human Behavior Recognition;HUM-CENT COMPUT INFO;2023

3. Multi-expert human action recognition with hierarchical super-class learning;Knowledge-Based Systems;2022-08

4. GaitVision: Real-Time Extraction of Gait Parameters Using Residual Attention Network;Complexity;2021-11-28

5. The Dataset and Baseline Models to Detect Human Postural States Robustly against Irregular Postures;2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS);2021-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3