Abstract
Finding an appropriate shape for the releasing building is thoroughly relevant given the energy dissipation and safety requirements of a high dam in a sediment-laden river. Thirty-six physical experiments on trajectory energy dissipation were conducted, researching the influence of three overflow shapes (contraction ratios of 0.5, 0.4, and 0.3) with four sediment concentrations (0, 50, 150, and 250 kg/m3) on the discharge, flow regime, and hydrodynamic pressure of a plunge pool slab. The experimental results demonstrated that the flow coefficient gradually decreased as the contraction ratio decreased in a relatively high weir head, regardless of the sediment concentration. The water nappe narrowed and the length of the longitudinal trajectory increased as the outlet shrinkage and sediment concentration decreased. With the increase in sediment concentration, the nappe regime approached stability, and the flow in the plunge pool tended toward small rolling, causing the impact pressure and fluctuating pressure to increase. Changes in overflow shape had little effect on the position of pressure peak, but the value became lower as the ratio diminished. The influence on the hydrodynamic pressure by outlet shrinkage became attenuated while the sediment concentration increased. The fluctuating energy and vortex scale were enhanced due to the increased viscosity with increasing sediment concentrations.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献