An Adaptive Multi-Level Quantization-Based Reinforcement Learning Model for Enhancing UAV Landing on Moving Targets

Author:

Abo Mosali Najmaddin,Shamsudin Syariful SyafiqORCID,Mostafa Salama A.ORCID,Alfandi Omar,Omar Rosli,Al-Fadhali NajibORCID,Mohammed Mazin AbedORCID,Malik R. Q.,Jaber Mustafa MusaORCID,Saif AbduORCID

Abstract

The autonomous landing of an unmanned aerial vehicle (UAV) on a moving platform is an essential functionality in various UAV-based applications. It can be added to a teleoperation UAV system or part of an autonomous UAV control system. Various robust and predictive control systems based on the traditional control theory are used for operating a UAV. Recently, some attempts were made to land a UAV on a moving target using reinforcement learning (RL). Vision is used as a typical way of sensing and detecting the moving target. Mainly, the related works have deployed a deep-neural network (DNN) for RL, which takes the image as input and provides the optimal navigation action as output. However, the delay of the multi-layer topology of the deep neural network affects the real-time aspect of such control. This paper proposes an adaptive multi-level quantization-based reinforcement learning (AMLQ) model. The AMLQ model quantizes the continuous actions and states to directly incorporate simple Q-learning to resolve the delay issue. This solution makes the training faster and enables simple knowledge representation without needing the DNN. For evaluation, the AMLQ model was compared with state-of-art approaches and was found to be superior in terms of root mean square error (RMSE), which was 8.7052 compared with the proportional–integral–derivative (PID) controller, which achieved an RMSE of 10.0592.

Funder

Zayed University cluster award

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning for enhancing transportation security: A comprehensive analysis of electric and flying vehicle systems;Engineering Applications of Artificial Intelligence;2024-03

2. Empowering Smart Environments: Dynamic Beamforming for Optimal TUAV Coverage in B5G Networks;2023 3rd International Conference on Emerging Smart Technologies and Applications (eSmarTA);2023-10-10

3. Handling Imbalanced Data for Improved Classification Performance: Methods and Challenges;2023 3rd International Conference on Emerging Smart Technologies and Applications (eSmarTA);2023-10-10

4. Quadcopter neural controller for take-off and landing in windy environments;Expert Systems with Applications;2023-09

5. HGRBOL2: Human gait recognition for biometric application using Bayesian optimization and extreme learning machine;Future Generation Computer Systems;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3