Comparative Life Cycle Sustainability Assessment of Mono- vs. Bivalent Operation of a Crucible Melting Furnace

Author:

Schutzbach Maximilian,Kiemel Steffen,Miehe RobertORCID,Köse Ekrem,Mages Alexander,Sauer Alexander

Abstract

The benefits of energy flexibility measures have not yet been conclusively assessed from an ecological, economic, and social perspective. Until now, analysis has focused on the influence of changes in the energy system and the ecological and economic benefits of these. Therefore, the objective of this study was to perform a life cycle sustainability assessment of energy flexibility measures on the use case of a bivalent crucible melting furnace in comparison with a monovalent one for aluminum light metal die casting. The system boundary was based on a cradle-to-gate approach in Germany and includes the production of the necessary process technologies and energy infrastructure and the utilization phase of the crucible melting furnaces in non-ferrous metallurgy. The LCSA is performed for different economic and environmental scenarios over a 25-year lifetime to account for potential adjustments in the energy system and volatile energy prices. In summary, it can be said that over the entire service life, no complete ecological, economic, and social advantage of energy flexibility measures through a bivalent system can be demonstrated. Only a temporarily better life cycle sustainability performance of the bivalent furnace can be shown. All results must be considered with the caveat that the bivalent crucible melting furnace has not yet been investigated in actual operation and the calculations of the utilization phase are based on the monovalent crucible melting furnace. To further sharpen the results, more research is needed and the use of actual data for bivalent operation.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference50 articles.

1. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,2021

2. Delivering the European Green Deal https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/delivering-european-green-deal_en

3. Emissions Database for Global Atmospheric Research, Version v6.0_FT_2020 (GHG Time-Series) http://data.europa.eu/89h/2f134209-21d9-4b42-871c-58c3bdcfb549

4. Greenhouse Gas Emissions to Fall by 8.7 Percent in 2020-BMUV Press Release https://www.bmuv.de/en/pressrelease/greenhouse-gas-emissions-fell-87-percent-in-2020

5. Biointelligenz: Eine neue Perspektive für Nachhaltige Industrielle Wertschöpfung: Ergebnisse der Voruntersuchung zur Biologischen Transformation der Industriellen Wertschöpfung (BIOTRAIN);Bauernhansl,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3