A Comprehensive Review of the Effects of Different Simulated Environmental Conditions and Hybridization Processes on the Mechanical Behavior of Different FRP Bars

Author:

Mirdarsoltany MohammadaminORCID,Abed FaridORCID,Homayoonmehr RezaORCID,Alavi Nezhad Khalil Abad Seyed Vahid

Abstract

When it comes to sustainability, steel rebar corrosion has always been a big issue, especially when they are exposed to harsh environmental conditions, such as marine and coastal environments. Moreover, the steel industry is to blame for being one of the largest producers of carbon in the world. To supplant this material, utilizing fiber-reinforced polymer (FRP) and hybrid FRP bars as a reinforcement in concrete elements is proposed because of their appropriate mechanical behavior, such as their durability, high tensile strength, high-temperature resistance, and lightweight-to-strength ratio. This method not only improves the long performance of reinforced concrete (RC) elements but also plays an important role in achieving sustainability, thus reducing the maintenance costs of concrete structures. On the other hand, FRP bars do not show ductility under tensile force. This negative aspect of FRP bars causes a sudden failure in RC structures, acting as a stumbling block to the widespread use of these bars in RC elements. This research, at first, discusses the effects of different environmental solutions, such as alkaline, seawater, acid, salt, and tap water on the tensile and bonding behavior of different fiber-reinforced polymer (FRP) bars, ranging from glass fiber-reinforced polymer (GFRP) bars, and basalt fiber-reinforced polymer (BFRP) bars, to carbon fiber-reinforced polymer (CFRP) bars, and aramid fiber-reinforced polymer (AFRP) bars. Furthermore, the influence of the hybridization process on the ductility, tensile, and elastic modulus of FRP bars is explored. The study showed that the hybridization process improves the tensile strength of FRP bars by up to 224% and decreases their elastic modulus by up to 73%. Finally, future directions on FRP and hybrid FRP bars are recommended.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3