Groundwater Environment and Health Risk Assessment in an In Situ Oil Shale Mining Area

Author:

Wang Xiaorong1,Liu Boyue1,He Shaolin2,Yuan Hongying1,Ji Dongli1,Li Ruolin1,Song Yang2,Xu Wei2,Liu Bo2,Xu Yingjun2

Affiliation:

1. School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China

2. Beijing Zhonglu Consulting Co., Ltd., PetroChina Planning and Engineering Institute, Beijing 100089, China

Abstract

To clarify the risk posed to groundwater in oil shale in situ mining areas, we examine five leached pollutants: Fe, Mn, Cr, sulfate, and ammonia nitrogen. Potential groundwater contents of these five pollutants were evaluated using an improved Nemero comprehensive index method and a health risk assessment method. The results show that, compared with the Class III groundwater quality standard (GB/T 14848-2017) used in the People’s Republic of China, average values of Fe, Mn, and sulfate in leaching solution from Fuyu oil shale exceed the standard, while Cr and ammonia nitrogen do not exceed the standard, and the leaching solution is within Class V groundwater quality. The average values of Fe and Mn in the leaching solution from Fushun oil shale exceed the Class III standard, while Cr, sulfate, and ammonia nitrogen values from this oil shale do not exceed the standard, and the leaching solution is Class IV in terms of groundwater quality. The weighting value used in the Nemero assessment method for the heavy metal Cr is the largest as its potential to cause harm to groundwater quality is the largest. The weight value for sulfate is the smallest as the harm degree is the smallest. The chemical carcinogen Cr has the greatest potential impact on human health. The health risk caused by the chemical non-carcinogen Mn is greater than that caused by Fe and ammonia nitrogen. When high pyrolysis temperatures are used, Mn will be released into groundwater in large quantities. Therefore, supervision and control should be strengthened. The results presented here can provide a reference for the comprehensive evaluation of groundwater risks caused by in situ oil shale mining.

Funder

Ministry of Science and Technology, PRC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3