Forecasting the Direction of Daily Changes in the India VIX Index Using Machine Learning

Author:

Prasad Akhilesh,Bakhshi Priti

Abstract

Movements in the India VIX are an important gauge of how the market’s risk perception shifts from day to day. This research attempts to forecast movements one day ahead of the India VIX using logistic regression and 11 ensemble learning classifiers. The period of study is from April 2009 to March 2021. To achieve the stated task, classifiers were trained and validated with 90% of the given sample, considering two-fold time-series cross-validation for hyper-tuning. Optimised models were then predicted on an unseen test dataset, representing 10% of the given sample. The results showed that optimal models performed well, and their accuracy scores were similar, with minor variations ranging from 63.33% to 67.67%. The stacking classifier achieved the highest accuracy. Furthermore, CatBoost, Light Gradient Boosted Machine (LightGBM), Extreme Gradient Boosting (XGBoost), voting, stacking, bagging and Random Forest classifiers are the best models with statistically similar performances. Among them, CatBoost, LightGBM, XGBoost and Random Forest classifiers can be recommended for forecasting day-to-day movements of the India VIX because of their inherently optimised structure. This finding is very useful for anticipating risk in the Indian stock market.

Publisher

MDPI AG

Subject

Finance,Economics and Econometrics,Accounting,Business, Management and Accounting (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3