Explainable AI for Credit Assessment in Banks

Author:

de Lange Petter Eilif,Melsom Borger,Vennerød Christian Bakke,Westgaard Sjur

Abstract

Banks’ credit scoring models are required by financial authorities to be explainable. This paper proposes an explainable artificial intelligence (XAI) model for predicting credit default on a unique dataset of unsecured consumer loans provided by a Norwegian bank. We combined a LightGBM model with SHAP, which enables the interpretation of explanatory variables affecting the predictions. The LightGBM model clearly outperforms the bank’s actual credit scoring model (Logistic Regression). We found that the most important explanatory variables for predicting default in the LightGBM model are the volatility of utilized credit balance, remaining credit in percentage of total credit and the duration of the customer relationship. Our main contribution is the implementation of XAI methods in banking, exploring how these methods can be applied to improve the interpretability and reliability of state-of-the-art AI models. We also suggest a method for analyzing the potential economic value of an improved credit scoring model.

Publisher

MDPI AG

Subject

Finance,Economics and Econometrics,Accounting,Business, Management and Accounting (miscellaneous)

Reference45 articles.

1. Explainability of a Artificial intelligenceGranting Scoring Model in Peer-to-Peer Lending;Ariza-Garzón;IEEE Access,2020

2. Boosting the margin: A new explanation for the effectiveness of voting methods;Bartlett;The Annals of Statistics,1998

3. Basel Committee on Banking Supervention (2022, November 01). International Convergence of Capital Measurement and Capital Standards. Available online: https://www.bis.org/publ/bcbs128.pdf.

4. Explainable models of credit losses;Bastos;European Journal of Operational Research,2022

5. Benhamou, Eric, Ohana, Jean-Jacques, Saltiel, David, and Guez, Beatrice (2022, November 01). Explainable AI (XAI) Models Applied to Planning in Financial Markets. Available online: https://openreview.net/forum?id=mJrKRgYm2f1.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3