Abstract
This paper presents the development of high-performance wireless sensor networks for local monitoring of air pollution. The proposed system, enabled by the Internet of Things (IoT), is based on low-cost sensors collocated in a redundant configuration for collecting and transferring air quality data. Reliability and accuracy of the monitoring system are enhanced by using extended fractional-order Kalman filtering (EFKF) for data assimilation and recovery of the missing information. Its effectiveness is verified through monitoring particulate matters at a suburban site during the wildfire season 2019–2020 and the Coronavirus disease 2019 (COVID-19) lockdown period. The proposed approach is of interest to achieve microclimate responsiveness in a local area.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献