Reduction of Power Imbalances Using Battery Energy Storage System in a Bulk Power System with Extremely Large Photovoltaics Interactions

Author:

Udawalpola RajithaORCID,Masuta TaisukeORCID,Yoshioka Taisei,Takahashi Kohei,Ohtake HideakiORCID

Abstract

Power imbalances such as power shortfalls and photovoltaic (PV) curtailments have become a major problem in conventional power systems due to the introduction of renewable energy sources. There can be large power shortfalls and PV curtailments because of PV forecasting errors. These imbalances might increase when installed PV capacity increases. This study proposes a new scheduling method to reduce power shortfalls and PV curtailments in a PV integrated large power system with a battery energy storage system (BESS). The model of the Kanto area, which is about 30% of Japan’s power usage with 60 GW grid capacity, is used in simulations. The effect of large PV power integration of 50 GW and 100 GW together with large BESS capacity of 100 GWh and 200 GWh has been studied. Mixed integer linear programming technique is used to calculate generator unit commitment and BESS charging and discharging schedules. The simulation results are shown for two months with high and low solar irradiance, which include days with large PV over forecast and under forecast errors. The results reveal that the proposed method eliminates power shortfalls by 100% with the BESS and reduce the PV curtailments by 69.5% and 95.2% for the months with high and low solar irradiance, respectively, when 200 GWh BESS and 100 GW PV power generation are installed.

Funder

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference42 articles.

1. Japan Photovoltaic Energy Association (JPEA)http://www.jpea.gr.jp/en

2. JPEA PV Outlookhttp://www.jpea.gr.jp/pvoutlook2050.pdf

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weighted Average Ensemble-Based PV Forecasting in a Limited Environment with Missing Data of PV Power;Sustainability;2024-05-13

2. Smart electric vehicle charging for reducing photovoltaic energy curtailment;Electric Power Systems Research;2024-05

3. Security Check Considering Japanese Electricity Market for Power Systems with a Large Photovoltaic Power Generation;2023 International Conference on Smart Energy Systems and Technologies (SEST);2023-09-04

4. Flexibility Enhancement Process for Power System Planning;2023 IEEE 17th International Conference on Industrial and Information Systems (ICIIS);2023-08-25

5. Integrating Battery Energy Storage Systems in the Unit Commitment Problem: a Review;Current Sustainable/Renewable Energy Reports;2023-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3