Pattern Recognition of Development Stage of Creepage Discharge of Oil–Paper Insulation under AC–DC Combined Voltage Based on OS-ELM

Author:

Jin Fubao,Zhang Shanjun,Zhou Yuanxiang

Abstract

The recognition of the creepage discharge development process of oil–paper insulation under AC–DC combined voltage is the basis for fault monitoring and diagnosis of converter transformers; however, only a few related studies are available. In this study, the AC–DC combined voltage with a ratio of 1:1 was used to develop a recognition method for the creepage discharge development process of an oil–paper insulation under a cylinder–plate electrode structure. First, the pulse current method was used to collect the discharge signals in the creepage discharge development process. Then, 24 characteristic parameters were extracted from four types of creepage discharge characteristic spectra after dimensionality reduction. Finally, based on the online sequential extreme learning machine (OS-ELM) algorithm, these characteristic parameters were used to recognize the development stage of the creepage discharge of the oil–paper insulation. The results showed that when the size of the sample training set used in the OS-ELM algorithm is close to the number of hidden layer neurons, a high recognition accuracy can be obtained, and the type of activation function has little influence on the recognition accuracy. Four stages of the creepage discharge development process were recognized using the OS-ELM algorithm; the trend was the same as that of the characteristic parameters of the entire creepage discharge development process. The recognition accuracy was 91.4%. The algorithm has a high computing speed and high accuracy and can train data in batches. Therefore, it can be widely used in the field of online monitoring and evaluation of electrical equipment status.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3