Energy Optimization of Electric Vehicles by Distributing Driving Power Considering System State Changes

Author:

Jang In-GyuORCID,Lee Chung-Seong,Hwang Sung-HoORCID

Abstract

In a battery-electric vehicle, a representative electric vehicle, there is a growing demand for performance and one-charge mileage improvement. As an alternative to such improvements, the capacity of the battery has been increased; however, due to the corresponding increase in the weight of the battery and the limited space in the vehicle, increasing the capacity of the battery also has limitations. Therefore, researches are being actively conducted to improve system operation efficiency to overcome such limitations. This paper proposes a distributing method of the driving forces to a battery-powered electric shuttle bus for last-mile mobility equipped with the decentralized driving system while taking into account voltage changes of the input terminals due to changes in the battery charge. The system operation efficiency changes were compared and evaluated by performing energy consumption analysis using ‘Manhattan Bus Driving Cycle’ at low voltage condition (SOC 20%). Various analyzes were performed and compared, such as the uniform distribution method of driving forces of the front and rear wheels (Uniform), the optimization method without considering the input terminal voltage change (Vnorm = 90 V), and the optimization method considering the input terminal voltage change (Vdclink). As a result, it shows that the proposed algorithm can improve 6.0% compared to the conventional uniform driving force distribution method (Uniform). Moreover, it shows that the real-time optimization method without considering the input voltage change (Vnorm = 90 V) can improve 5.3% compared to the uniform distribution method. The proposed method can obtain an additional 0.7% increase in total cost compared to the existing optimization method, which shows that the vehicle system has cost-effectiveness by reducing the battery capacity required to achieve the same mileage.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference17 articles.

1. The End of the Road? An Overview of Combustion-Engine Car Phase-Out Announcements across Europehttps://theicct.org/sites/default/files/publications/Combustion-engine-phase-out-briefing-may11.2020.pdf

2. Global Electric Car Sales by Key Markets, 2010–2020

3. Electric Vehicle Outlook 2020https://bnef.turtl.co/story/evo-2020

4. Power Up with 800-V Systems: The benefits of upgrading voltage power for battery-electric passenger vehicles

5. Navyahttps://navya.tech/en/solutions/moving-people/self-driving-shuttle-for-passenger-transportation/#autonomous

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3