Abstract
Machine-learning algorithms used for modelling olive-tree phenology generally and largely rely on temperature data. In this study, we developed a prediction model on the basis of climate data and geophysical information. Remote measurements of weather conditions, terrain slope, and surface spectral reflectance were considered for this purpose. The accuracy of the temperature data worsened when replacing weather-station measurements with remote-sensing records, though the addition of more complete environmental data resulted in an efficient prediction model of olive-tree phenology. Filtering and embedded feature-selection techniques were employed to analyze the impact of variables on olive-tree phenology prediction, facilitating the inclusion of measurable information in decision support frameworks for the sustainable management of olive-tree systems.
Subject
General Earth and Planetary Sciences
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献