A Distributed Control Scheme for Cyber-Physical DC Microgrid Systems

Author:

Onaolapo Adeniyi K.1ORCID,Sharma Gulshan1ORCID,Bokoro Pitshou N.1ORCID,Aluko Anuoluwapo2ORCID,Pau Giovanni3ORCID

Affiliation:

1. Department of Electrical Engineering Technology, The University of Johannesburg, Johannesburg P.O. Box 524, South Africa

2. Department of Electrical and Software Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada

3. Faculty of Engineering and Architecture, Kore University of Enna, 94100 Enna, Italy

Abstract

An innovative distributed secondary control technique for balanced current sharing and voltage regulation for an off-grid DC microgrid setup is presented in this research. The droop control scheme is conventionally used for current sharing amongst distributed sources (DSs) in a microgrid. However, this method has two major drawbacks. Firstly, due to the line resistance of each DS, the output voltage is different for each DS, and the output current-sharing property deteriorates. Secondly, the droop action increases the DC bus voltage variation. To address these drawbacks, a fuzzy-based distributed secondary controller is proposed. The proposed controller in each DS simultaneously ensures balanced current sharing and sustains DC bus voltage at the reference value by using a communication network to interact with one another. The required circumstance to guarantee the proposed controller’s stability is provided. The stability analysis is beneficial to inform the choice of control parameters. The real-time simulation outputs demonstrate the proposed control scheme’s robustness in achieving the control objectives under varying operating conditions.

Funder

University of Johannesburg Faculty—University Research Committee (Faculty–URC) funding

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3