NOx Emission Limits in a Fuel-Flexible and Defossilized Industry—Quo Vadis?

Author:

Schmitz Nico1ORCID,Sankowski Lukas1ORCID,Busson Elsa1,Echterhof Thomas1ORCID,Pfeifer Herbert1

Affiliation:

1. Department for Industrial Furnaces and Heat Engineering, RWTH Aachen University, 52074 Aachen, Germany

Abstract

The reduction of CO2 emissions in hard-to-abate industries is described in several proposals on the European and National levels. In order to meet the defined goals, the utilization of sustainable, non-fossil fuels for process heat generation in industrial furnaces needs to be intensified. The focus mainly lies on hydrogen (H2) and its derivates. Furthermore, biofuels, e.g., dimethyl ether (DME), are considered. Besides possible changes in the process itself when substituting natural gas (NG) with alternative fuels, the emission of nitrogen oxides (NOx) is a major topic of interest. In current European standards and regulations, the NOx emissions are specified in mg per m3 of dry off-gas and refer to a reference oxygen concentration. Within this study, this limit specification is investigated for its suitability for the use of various fuel-oxidizer combinations in industrial combustion applications. Natural gas is used as a reference, while hydrogen and DME are considered sustainable alternatives. Air and pure oxygen (O2) are considered oxidizers. It is shown that the current specification, which is built on the use of fossil fuels, leads to non-comparable values for alternative fuels. Therefore, alternative NOx limit definitions are discussed in detail. The most suitable alternative was found to be mg per kWh. This limit specification is finally being investigated for its compliance with current regulations on various aspects of Continuous Emission Monitoring Systems.

Funder

European Union

Federal Ministry for Economic Affairs and Climate Action

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference91 articles.

1. European Commission (2019). The European Green Deal: COM(2019) 640 Final, European Commission.

2. United Nations (2015). Framework Convention on Climate Change. The Paris Agreement, United Nations.

3. European Commission (2020). A Hydrogen Strategy for A Climate-Neutral Europe: COM(2020) 301 Final, European Commission.

4. European Commission (2021). ‘Fit for 55′: Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality: COM(2021) 550 Final, European Commission.

5. European Commission (2022). REPowerEU Plan: COM(2022) 230 Final, European Commission.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3