Synthesis of Hexagonal Nanophases in the La2O3–MO3 (M = Mo, W) Systems

Author:

Baldin Egor1,Lyskov Nikolay23ORCID,Vorobieva Galina1,Kolbanev Igor1,Karyagina Olga4,Stolbov Dmitry5ORCID,Voronkova Valentina6,Shlyakhtina Anna1ORCID

Affiliation:

1. N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia

2. Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka, Moscow 142432, Russia

3. Faculty of Physics, National Research University “Higher School of Economics”, Moscow 105066, Russia

4. Emanuel Institute of Biochemical Physics RAS, Russian Academy of Sciences, Moscow 119334, Russia

5. Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia

6. Department of Physics, Lomonosov Moscow State University, Moscow 119991, Russia

Abstract

We report a study of nanophases in the La2O3–MO3 (M = Mo, W) systems, which are known to contain a variety of good oxygen-ion and proton conductors. Mechanically activated La2O3 + MO3 (M = Mo, W) mixtures and the final ceramics have been characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) with Rietveld refinement. The microstructure of the materials has been examined by scanning electron microscopy (SEM), and their conductivity in dry and wet air has been determined using impedance spectroscopy. In both systems, the formation of hexagonal La15M8.5O48 (phase II, 5H polytype) (M = Mo, W) nanophases is observed for the composition 1:1, with exothermic peaks in the DSC curve in the range ~480–520 °C for La15Mo8.5O48 and ~685–760 °C for La15W8.5O48, respectively. The crystallite size of the nanocrystalline tungstates is ~40 nm, and that of the nanocrystalline molybdates is ~50 nm. At higher temperatures (~630–690 and ~1000 °C), we observe irreversible reconstructive phase transitions of hexagonal La15Mo8.5O48 to tetragonal γ-La2MoO6 and of hexagonal La15W8.5O48 to orthorhombic β-La2WO6. We compare the temperature dependences of conductivity for nanoparticulate and microcrystalline hexagonal phases and high-temperature phases differing in density. Above 600 °C, oxygen ion conduction prevails in the coarse-grained La18W10O57 (phase I, 6H polytype) ceramic. Low-density La15W8.5O48 and La15Mo8.5O48 (phase II, 5H polytype) nanoceramics exhibit predominantly electron conduction with an activation energy of 1.36 and 1.35 eV, respectively, in dry air.

Funder

Russian Foundation for Basic Research

Ministry of Education and Science

HSE Scientific and Educational Group

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3