Affiliation:
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (NCEPU), School of New Energy, North China Electric Power University, Beijing 102206, China
2. China Southern Power Grid Technology Co., Ltd., Guangzhou 510080, China
Abstract
Blade icing seriously affects wind turbines’ aerodynamic performance and output power. Timely and accurately predicting blade icing status is crucial to improving the economy and safety of wind farms. However, existing blade icing prediction methods cannot effectively solve the problems of unbalanced icing/non-icing data and low prediction accuracy. In order to solve the above problems, this paper proposes a wind turbine blade icing prediction method based on the focal loss function and CNN-Attention-GRU. First, the recursive feature elimination method combined with the physical mechanism of icing is used to extract features highly correlated with blade icing, and a new feature subset is formed through a sliding window algorithm. Then, the focal loss function is utilized to assign more weight to the ice samples with a lower proportion, addressing the significant class imbalance between the ice and non-ice categories. Finally, based on the CNN-Attention-GRU algorithm, a blade icing prediction model is established using continuous 24-h historical data as the input and the icing status of the next 24 h as the output. The model is compared with advanced neural network models. The results show that the proposed method improves the prediction accuracy and F1 score by an average of 6.41% and 4.27%, respectively, demonstrating the accuracy and effectiveness of the proposed method.
Funder
the National Key Research and Development Program of China
Research on smart operation control technologies for offshore wind farms
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献