Optimization of Circulating Fluidized Bed Boiler Combustion Key Control Parameters Based on Machine Learning

Author:

Han Lei1,Wang Lingmei1,Yang Hairui2,Jia Chengzhen3,Meng Enlong4,Liu Yushan4,Yin Shaoping4

Affiliation:

1. School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China

2. Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China

3. Department of Automation, Tsinghua University, Beijing 100084, China

4. School of Automation and Software, Shanxi University, Taiyuan 030006, China

Abstract

During the coal-fired circulating fluidized bed unit participation in the peak regulation process of the power grid, the thermal automatic control system assists the operator to adjust the mode focusing on pollutant control and ignoring the economy so that the unit’s operating performance maintains a huge potential for deep mining. The high-dimensional and coupling-related data characteristics of circulating fluidized bed boilers put forward more refined and demanding requirements for combustion optimization analysis and open-loop guidance operation. Therefore, this paper proposes a combustion optimization method that incorporates neighborhood rough set machine learning. This method first reduces the control parameters affecting multi-objective combustion optimization with the neighborhood rough set algorithm that fully considers the correlation of each variable combination and then establishes a multi-objective combustion optimization prediction model by combining the online calculation of boiler thermal efficiency. Finally, the NSGAII algorithm realizes the optimization of the control parameter setting value of the boiler combustion system. The results show that this method reduces the number of control commands involved in combustion optimization adjustment from 26 to 11. At the same time, based on the optimization results obtained by using traditional combustion optimization methods under high, medium, and medium-low load conditions, the boiler thermal efficiency increased by 0.07%, decreased by 0.02%, and increased by 0.55%, respectively, and the nitrogen oxide emission concentration decreased by 5.02 mg/Nm3, 7.77 mg/Nm3, and 7.03 mg/Nm3, respectively. The implementation of this method can help better account for the economy and pollutant discharge of the boiler combustion system during the variable working conditions, guide the operators to adjust the combustion more accurately, and effectively reduce the ineffective energy consumption in the adjustment process. The proposal and application of this method laid the foundation for the construction of smart power plants.

Funder

National Natural Science Foundation of China

Shanxi Province key Research and Development Plan Projects

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3