High-Speed Wavelet Image Processing Using the Winograd Method with Downsampling

Author:

Lyakhov Pavel1ORCID,Semyonova Nataliya1,Nagornov Nikolay1ORCID,Bergerman Maxim1ORCID,Abdulsalyamova Albina1

Affiliation:

1. Department of Mathematical Modelling, North-Caucasus Federal University, 355009 Stavropol, Russia

Abstract

Wavelets are actively used to solve a wide range of image processing problems in various fields of science and technology. Modern image processing systems cannot keep up with the rapid growth in digital visual information. Various approaches are used to reduce the computational complexity and increase computational speeds. The Winograd method (WM) is one of the most promising. However, this method is used to obtain sequential values. Its use for wavelet image processing requires expanding the calculation methodology to cases of downsampling. This paper proposes a new approach to reduce the computational complexity of wavelet image processing based on the WM with decimation. Calculations have been carried out and formulas have been derived that implement digital filtering using the WM with downsampling. The derived formulas can be used for 1D filtering with an arbitrary downsampling stride. Hardware modeling of wavelet image filtering on an FPGA showed that the WM reduces the computational time by up to 66%, with increases in the hardware costs and power consumption of 95% and 344%, respectively, compared to the direct method. A promising direction for further research is the implementation of the developed approach on ASIC and the use of modular computing for more efficient parallelization of calculations and an even greater increase in the device speed.

Funder

Russian Science Foundation

Council for grants of President of Russian Federation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3