A Reduced-Dimension Extrapolating Method of Finite Element Solution Coefficient Vectors for Fractional Tricomi-Type Equation

Author:

Li Yuejie12,Luo Zhendong23ORCID

Affiliation:

1. Department of Mathematics and Computer Engineering, Ordos Institute of Technology, Ordos 017000, China

2. School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China

3. School of Digitalized Intelligence Engineering, Hunan Sany Polytechnic College, Changsha 410129, China

Abstract

We here employ a proper orthogonal decomposition (POD) to reduce the dimensionality of unknown coefficient vectors of finite element (FE) solutions for the fractional Tricomi-type equation and develop a reduced-dimension extrapolating FE (RDEFE) method for the fractional Tricomi-type equation. For this purpose, we first develop an FE method for the fractional Tricomi-type equation and provide the existence, unconditional stability, and error analysis for the FE solutions. We then develop the RDEFE method for the fractional Tricomi-type equation by means of the POD technique and analyze the existence, unconditional stability, and errors for the RDEFE solutions by using the matrix analysis. Lastly, we provide two numerical examples to verify our theoretical results and to explain the advantages of the RDEFE method.

Funder

Ordos Science and Technology Plan Project

Inner Mongolia Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference50 articles.

1. Podlubny, I. (1999). Fractional Differential Equations, Academic Press.

2. A theoretical basis for the application of fractional calculus to viscoelasticity;Bagley;J. Rheol.,1983

3. Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier Science Limited.

4. Fractional calculus models of complex dynamics in biological tissues;Magin;Comput. Math. Appl.,2010

5. The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics;Metzler;J. Phys. A Math. Gen.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3